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Table I 
•bital 

2s 
2p 
2s 
2p 
2s 
2p 
6s 
6p 
5d 

H11 (eV) 

-15.2 
-8.5 

-21.4 
-11.4 
-26.0 
-13.4 

-7.67 
-5.01 
-8.21 

fi 
1.30 
1.30 
1.625 
1.625 
1.95 
1.95 
2.14 
2.08 
3.78 

"Contraction coefficients used in the double-f expansion. 

sets of points (both in the squares and octagons) are created. The 
possibility of creating two independent and electronically equivalent 
sets of orbitals near the Fermi level (at the HOMO) level is the 
common link between the cyclobutadiene, boron nitride, and 
MB2C2 problems. 
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There have been several approaches to provide simple algebraic 
models for the description of molecular chirality; most recent works 
include various group theoretical approaches1"6 which have given 
new insight and new methodology for such analyses. In this study 
we shall describe an intiutively simple (one may be tempted to 
say, playful) approach that, nonetheless, leads to a rigorous al
gebraic description of chirality in terms of simple polynomials. 

A recent discovery of a set of polynomials describing the shapes, 
and, in particular, the chirality properties of knots of various 
types7,8 is expected to have important implications in a variety 
of applied fields. Whereas the full development of these poly-

(1) Ruch, E.; Schonhofer, A. Theor. Chim. Acta 1968,10, 91. Ruch, E.; 
Schonhofer, A. Theor, Chim. Acta 1970,19, 225. Ruch, E.; Hasselbarth, W.; 
Richter, B. Theor. Chim. Acta 1970, 19, 288. 
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(5) Mislow, K.; Siegel, J. /. Am. Chem. Soc. 1984, 106, 3319. 
(6) Anet, F. A. L.; Miura, S. S.; Siegel, J.; Mislow, K. J. Am. Chem. Soc. 

1983, 105, 1419. 
(7) Jones, V. F. R. Bull. Am. Math. Soc. (NS) 1985, 12, 103. 
(8) Lickorish, W. B. R.; Millett, K. C. Mathematical Sciences Research 

Institute, 1985, preprint 04212-85. Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, 
W. B. R.; Millett, K.; Ocneanu, A. Bull. Am. Math. Soc. (NS) 1985,12, 239. 
Earlier works that have led to the new developments include Alexander, J. 
W. Proc. Natl. Acad. Sci. U.S.A. 9, 93, 1923, and An enumeration of knots 
and links, Conway, J. H. Computational Problems in Abstract Algebra; 
Pergamon Press: New York, 1970; pp 329. 

Appendix 

The calculations are of the Extended Hiickel type23'24 with the 
parameters and exponents of Table I. The modified Wolfs-
berg-Helmholz formula25 was used. The results for the ideal nets 
for I and II reported in Figures 2 and 3 were obtained with use 
of a common distance of 1.62 A, exponents f2s and f2p of 1.30, 
and the Hu values for B and C (Table I). Calculations for the 
ideal 63 net were carried out with use of a common distance of 
1.42 A, exponents ^25 and f2p of 1.625, and the Hu values for B 
and N. fc-point meshes used in the calculations were as follows: 
64 k-points for type I net; 55 k-points for type II net; 40 k-points 
for 18; 55 k-points for 22; and 64 k-points for 23 and 24. Each 
of the k-points meshes are referred to the number of points 
computed in the irreducible wedge of the appropriate Brillouin 
zone. The DOS curves of Figure 1 were smoothed with Gaussian 
functions with a standard deviation of 0.08 eV. 

Registry No. CaB2C2, 69106-69-0; B2C2La, 12678-10-3; boron nitride, 
10043-11-5. 

(23) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. 
(24) Zheng, C; Hoffmann, R., unpublished results. 
(25) Ammeter, J. H.; Bttrgi, H. B.; Thiebeault, J.; Hoffmann, R. J. Am. 

Chem. Soc. 1978, 100, 3686. 

nomials has required rather sophisticated mathematical techniques, 
nonetheless, their appreciation and intuitive understanding requires 
no more than high school mathematics and their application is 
extremely simple. In fact, their actual generation and application 
to the chirality problems of chemistry, addressed in this study, 
require no more than an understanding of what is polynomial and 
some practical skills in handling a string when tying knots around 
ball-and-stick molecular models. 

In chemistry, chirality is of fundamental importance, appre
ciated by both chemists and mathematicians. This is well-illus
trated by the fact that the very first chemical application of these 
new polynomials has already been described by one of the original 
discoverers of the new polynomials.9 This application has led 
to a description of chirality of cyclic chain molecules which 
themselves form loops, knots, and links such as the molecules 
recently synthetized by Walba.10 Although these molecules occur 
rarely in nature, they are of special theoretical interest. The same 
technique is also expected to find applications in processing electron 

(9) Millett, K. C. Presented at the IUPAC International Symposium on 
Applications of Mathematical Concepts to Chemistry, Dubrovnik, Yugoslavia, 
Sept 1985; to be published. 

(10) Walba, D. M. Stereochemical Topology; King, R. B., In Chemical 
Applications of Topology and Graph Theory, Elsevier: Amsterdam, 1983. A 
related early study on similar molecules is described by Wasserman (Was-
serman, E. J. Am. Chem. Soc. 1960, 82, 4433) and by Frisch and Wasserman 
(Frisch, H. L.; Wasserman, E. J. Am. Chem. Soc. 1961, 83, 3789). 
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Chirality Polynomials and Conformational Invariants 

J TYING KNOTS AROUND CHIRAL CENTRES j 

LEFT-HANOEO I I RIGHT-HANDED 

TREFOIL KNOT T- [ ] TREFOIL KNOT Tt 

Figure 1. The left-handed and righ-handed trefoil knots obtained by 
applying the knot-generation algorithm to chiral carbon centers of S and 
R configurations, respectively. 

microscopic images of folded and/or knotted polymer chains such 
as DNA." 

In this study we propose a simple method that allows one to 
apply the knot theoretical polynomials to a much larger family 
of molecules which family contains all those molecules in which 
chirality is a consequence of one or several chiral carbon centers. 
In a formal sense, we shall not apply the knot theoretical poly
nomial method directly to the description of chiral molecules, 
rather, we shall use these polynomials to describe the chirality 
of the space surrounding the molecules. We shall do this by "tying 
knots" around chiral (as well as achiral) carbon centers in a 
specified way. An algorithm, in fact, a set of practical instructions 
will be given, how to produce unique knots around such molecules, 
each of which knots is then characterized by a pair of chirality 
polynomials as its topological invariants. Then, these chirality 
polynomials can be used as a concise representation for the analysis 
and comparison of topological chirality properties of different 
molecules. 

The main objective of this paper is to develop a knot-theoretical 
polynomial description of the chirality of molecules containing 
an arbitrary large number of chiral and achiral carbon centers. 
If the number of centers is large, then the recognition of various 
chirality properties and that of the overall effects of configuration 
inversion at selected centers become a rather complicated task 
when one is restricted to the manipulation of three dimensional 
models and plane drawings. On the other hand, the polynomials 
provide a simple computational method that can be implemented 
easily on a personal computer. 

By a combination of a few simple knots as basic entities the 
knots of large molecules can be generated rather easily. For 
example, if the chirality is a result of chiral carbon centers, then 
a "knot bank" of three formal knots is sufficient to build the actual 
knot for the molecule. In fact, by knowing the polynomials for 
these three knots and knowing the rules of how to combine them, 
no actual generation of the knots is required, and the corre-

(11) Michels, J. P. J.; Wiegel, F. W. Phys. Lett. A 1982, 9OA, 381. Dean, 
F. B.; Stasiak, A.; Roller, T.; Cozzarelli, N. R. J. Biol. Chem. 1985, 260, 4795. 
Wang, J. C. Ann. Rev. Biochem. 1985, 54, 665. Wasserman, S. A.; Cozzarelli, 
N. R. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 1079. Simon, J. Topological 
Chirality of Certain Molecules; to be published. Sumners, D. W. The Role 
of Knot Theory in DNA Research; to be published. Kikuchi, T.; N6methy, 
G.; Scheraga, H. A. J. Comput. Chem. 1986, 7, 67. 
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[TYPES OF CROSSINGS 

X X X 
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Left-handed Right-handed Avoided 

Crossing Crossing Crossing 

Figure 2. The three possible crossing types for plane projections of 
oriented strings. 

sponding chirality polynomials can be generated by a few lines 
of algebra or by using the simplest of personal computers. 

From Chiral Centers to Knots and to Polynomials. We shall 
illustrate the main idea of the proposed model by a simple example. 
In Figure 1 an enantiomeric pair of chiral methane derivatives 
is shown. On the basis of the stereochemical priority and spatial 
distribution of the substituents, a set of simple instructions can 
be given, how to tie a string around each carbon atom (vide infra). 
By joining the beginning (marked with an arrow) and the end of 
the string, a knotted loop is obtained for each molecule. By 
removing these loops from the molecule, the two simple knots, 
the left-handed trefoil, and the right-handed trefoil are obtained, 
as shown in Figure 1. These two trefoil knots are chiral, and they 
reflect the chirality of the corresponding carbon centers used for 
their construction. 

The essential point is that these knots describe the chirality of 
the space surrounding the chiral center and not that of the chiral 
center directly. If one imagines the molecule being a sculpture, 
then this model describes the chirality of the hollow casting shell. 
This is the very reason why the knot-theoretical description of 
chirality is now applicable to molecules which themselves do not 
form knots. 

Note, that we shall assume that these knots are given an ori
entation, as shown by the arrow in Figure 1. Following the usual 
classification of knots7"9 in terms of crossings in their two-di
mensional projected images, we shall distinguish three crossing 
types, X+, X_, and X0, shown in Figure 2. Case X+ may be 
regarded as a "right-handed" crossing: when pointing the right 
thumb along either one of the arrows while holding it in one's right 
hand, the fingers point along the other arrow. Note that this 
remains true if the orientations of both arrows are reversed, e.g., 
if the orientation is reversed along the entire string in a single 
twisted loop. 

Similarly, X. can be regarded as a left-handed crossing with 
the same invariance properties. Case X0 corresponds to "no 
crossing", or "avoided crossing". 

Note that no matter how we produce a projection of the left-
handed trefoil of Figure 1, as long as there are no tangential 
contacts between projections of string segments nor overlapping 
crossings, three crossings will be of type X_. Similarly, the 
right-handed trefoil has all three of its crossings of type X+ that 
does not depend on the particular way the trefoil is drawn, as long 
as there are no tangential contacts nor overlapping crossings. 

The two chiral carbon centers can be characterized by the knots, 
hence, by the sets of crossing symbols (X., X_, X.) and (X+, X+, 
X+), respectively. For knots of three crossings the possibilities 
are rather limited, and for trefoils a list of the crossing symbols 
(in fact, a single crossing symbol) is sufficient for characterization. 
However, if one wishes to extend this model to molecules with 
several chiral centers, hence, to more complicated knots and links, 
then a list of crossing symbols may conceal the possibilities for 
a simpler representation of the same knot or link and its topological 
and chiral properties. There is, however, a more concise description 
of the chirality of even complicated knots and links by generating 
topologically invariant polynomials which are defined in terms 
of these crossing types. These polynomials are rather simple and 
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have some intriguing properties which are suitable for detecting 
and analyzing various types of topologically chiral molecules even 
in rather complicated cases. 

In the following section we shall describe an actual algorithm 
which leads to unique knots for various combinations of chiral 
(and achiral) carbon centers. Subsequently, we shall describe the 
polynomials obtained for these knots and illustrate their chemical 
applications with simple examples. For sake of simplicity, we shall 
often use the term "knot" in a general sense for all objects obtained 
by manipulating strings and their crossings, that is, for proper 
knots as well as for links and for "unknotted" simple loops. 

An Algorithm for Knot Generation. As has been pointed out 
by Mislow and Siegel,5 within the Cahn-Ingold-Prelog (CIP) 
system for the characterization of chiral centers12 by symbols R 
and S it is possible that the mirror image of an R center is also 
R (as is the case, e.g., for product of an achiral diastereomer of 
2,3,4-trihydroxyglutaric acid with (S)-lactic acid5). This possi
bility, although uncommon, is inconsistent with the knot theoretical 
model and the relevant polynomials, where the behavior of objects 
with respect to reflection planes is the main tool for character
ization. Since global chirality is equivalent to nonsuperimposibility 
of mirror images, the forthcoming analysis requires that the 
characterization of carbon centers is also based on the relations 
between the substituents and their mirror images. Following the 
distinction of chirotopicity and stereogenicity by Mislow and 
Siegel,5 in this study we shall consider a tetrahedral carbon center 
C a chirogenic center (or in short, chiral center, wherever this term 
does not lead to ambiguity) if and only if no two substituents of 
C are mirror images of one another. Two substituents that are 
mirror images of one another will be considered equivalent by 
reflection (or in short, equivalent whenever this term does not lead 
to ambiguity), and we shall use the CIP system with identity of 
substituents replaced by equivalence of substituents. In particular, 
invoking equivalence by reflection instead of identity restricts the 
R and S classification to chirogenic centers. Within this 
framework no chirality label R or S is attached to the above-
mentioned (achirogenic) center in the example of Mislow and 
Siegel.5 The concept of chirogenicity is distinct from both chi
rotopicity and stereogenicity; the carbon atom of a methyl group 
in a chiral molecule is chirotopic but achirogenic, whereas the 
carbon atom in a molecule CABRR having two identical chiral 
substituents R and two different achiral substituents A and B of 
the central carbon atom C is nonstereogenic but chirogenic.13 

Chirogenicity is directly linked to reflection properties and serves 
as a more convenient basis for our present studies. 

In this and in the following sections it is necessary to define 
an ordering within sequences of pairs of numbers or in sequences 
of triplets of numbers, etc. We shall do this by the symmetric 
lexicographic ordering. Considering, e.g., triplets of numbers, first 
we write each triplet such that the three numbers are monoton-
ically nondecreasing, e.g., instead of (3,1,3) we write (1,3,3,). In 
fact, we consider triplet (1,3,3) as the standard form that is 
symmetrically equivalent to all of its permutations. Then, we apply 
the lexicographic ordering to the standard forms, much the same 

(12) Cahn, R. S.; Ingold, C. K.; Prelog, V. Angew. Chem. 1966, 78,413. 
(13) Since an interchange of the two R substituents does not lead to a new 

isomer, the carbon atom C is nonstereogenic. Note that in spite of the identity 
of two substituents, R and R, no mirror plane passes through C; hence, it is 
natural to regard this chirogenic carbon atom as a chiral center, that is, indeed 
the center of a chiral molecule. There are two choices for the ordering of the 
two R substituents; we adopt the one that is consistent with assigning label 
R to C. In general, we shall assign the label of the highest (CIP) priority pair 
of identical chiral substituents to the central C atom. For example, the labels 
of the central carbon atoms of molecules CABRR, CABSS, and CRRS'S' are 
R, S, and S, respectively, where in CRRS'S' it is assumed that the two 
identical S' substituents have higher CIP priority number than that of the two 
identical R substituents. In the mirror image CSSR'R' of CRRS'S' the same 
rule implies a label R assigned to C. For a consistent generation of knots we 
need to prioritize substituents in such cases as well. In all instances, the actual 
priority numbers assigned to such identical chiral substituents are chosen so 
that the assignment is consistent with the given label R or S of the central 
carbon atom C. Note that the chemical relation "equivalent by reflection* 
(mirror image relation) is nontransitive and nonreflexive, hence not a math
ematical equivalence relation. 

way as alphabetic order is used in dictionaries, e.g., (1,7,8) comes 
before (2,2,3), that is, (1,7,8) is "smaller" than (2,2,3). 

Consider first the simple case of a single carbon atom having 
four different substituents denoted by 1,2, 3, and 4 as shown in 
Figure 1. We assume that these numerical labels follow the 
standard stereochemical rules for the priority of substituents, e.g., 
for the compound CHBrClI, bromochloroiodomethane, the labels 
1, 2, 3, and 4 stand for I, Br, Cl, and H, respectively. This example 
illustrates the steps of the algorithm taken at each center. 

The general rules for the generation of a unique knot are as 
follows: (i) Following the standard IUPAC numbering of atoms, 
order the chiral and achiral centers of the molecule. Choose the 
first such center. Mark one end of the string as the "origin" that 
defines an orientation for the string, (ii) Take all the k atoms 
of the molecule that are linked to the current chiral (or achiral) 
center. These atoms define the vertices of a convex polyhedron 
P. (Most commonly, Pisa tetrahedron), (iii) Assign a number 
of priority, 1, 2, ... etc. to each vertex atom, based on the CIP 
rules of stereochemistry where identity of substituents is replaced 
by equivalence by reflection (see also note 13, concerning a 
previous example). If two substituents are equivalent, they are 
assigned identical numbers, (iv) Choose a face of the polyhedron 
P that has the set of lowest possible numbers assigned to its 
vertices. Attach the current position of the string to the middle 
of this face, (v) To lead the string from one face to the next face 
take first all number pairs (ij) occurring on the edges of the 
current face, and for each pair (i J) count the number m(ij) that 
is the number of times the string has passed between numbers 
i and j on the current polyhedron P. Take all those edges of P 
for which the number m(i J) is minimum. From this set choose 
and traverse an edge which bears the smallest pair of numbers 
at its vertices, as defined by the symmetric lexicographic ordering. 
It is possible that a chosen edge has already been crossed by the 
string segment between the starting face of P and the current 
location. We refer to such a case as multiple edge crossing. If 
the current occurrence of multiple edge crossing in the nth on this 
polyhedron P, then lead the string through the edge under the 
other string segment(s) if n is odd and above the other string 
segment(s) if n is even, (vi) Repeat step (v) until each edge has 
been crossed at least once and the string returns to the starting 
face. To ensure that no additional "knottedness" results from loose 
segments, tighten up each knotted segment at the centers, (vii) 
Move to the next center if there is any left and repeat steps 
(ii)-(vi). If there is no more center left, then remove the molecular 
model. We may view the resulting string in two ways: (a) in "high 
resolution", i.e., considering each knotted segment in full detail 
or (b) in "low resolution", i.e., considering each tightly knotted 
segment at the chiral centers as mere imperfections of the string. 
Join the two ends of the string so that in "low resolution" it should 
appear as a simple, unknotted loop, (viii) If there are equivalent 
substituents, then it is possible that the choice of starting face or 
the choice of the edge to be crossed is not unique. In such a case 
choose the alternative which generates the smallest pair of edge 
numbers at the earliest occasion where a difference occurs in the 
sequence of edges crossed. If two alternatives result in exactly 
the same pair sequence, then the knots are identical as it can be 
verified for all carbon centers by direct construction of these knots. 

This algorithm generates a unique knot for the given set of chiral 
and achiral carbon centers. The information on the topological 
chirality of the chiral centers, i.e., on chirality properties that do 
not depend on the precise relative location and chemical identity 
of chiral centers, is retained in the knot even though the string 
is removed from the molecular model. Each knot defines a pair 
of polynomials that are conformational invariants. These poly
nomials provide a simple test for topological chirality, hence for 
chirality of the molecule in any conformation that preserves the 
chiral properties of individual centers. Whereas these polynomials 
are already powerful enough to give a sufficient condition for 
molecular chirality, they can be suitably modified for the de
scription of colored knots that allows them to retain additional 
information on the chemical identities of individual chiral centers. 
As discussed in a subsequent section, these modified polynomials 
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Table I. Application of the Knot-Generating Algorithm to the 
Molecule Bromochloroiodomethane of Figure 1 

KNOTS FOR TWO CHIRAL CENTRES 

face 

(1,2,3) 
(1,2,4) 
(1,3,4) 
(1,2,3) 
(2,3,4) 
(1,2,4) 
(1,2,3) 
(1,3,4) 
(2,3,4) 

edges crossed 
fewest times" 

(1,2), (1,3), (2,3) 
(1,4), (2,4) 
(1,3), (3,4) 
(2,3) 
(2,4), (3,4) 
(1,2), (1,4), (2,4) 
(1,3), (2,3) 
(3,4) 
(2,3), (2,4), (3,4) 

edge selctd 

(1,2) 
(1,4) 
(1,3) 
(2,3) 
(2,4) 
(1,2) 
0 ,3) 
(3,4) 
(2,3) 

countr of 
multple 
crossngs 

1 
2 

3 

string passes 
with respct 

to itslf 

under 
over 

under 

"Since all substituents (I, Br, Cl, and H) are unique, there is a one-
to-one assignment between pairs and edges. 

Table II. Application of the Knot-Generating Algorithm to Achiral 
Derivatives I-VI 

substitutes 

s„hstitri P°stn 

species 1 2 3 4 

I 1 1 3 4 

II 1 2 2 4 
III 1 2 3 3 
IV 1 1 1 4 
V 1 2 2 2 

VI 1 1 1 1 

starting 
face 

(1,1,3) 

(1,2,2) 
(1,2,3) 
(1,1,1) 
(1,2,2) 
(1,1,1) 

sequence of prs of edge 
nos. along string 

(1,1)(1,4)(1,3)(1,1)(1,4)(3,4)-
(1,3) 

(1,2)(1,4)(2,4)(2,2) 
(1,2)(1,3)(3,3)(2,3) 
( 1 , I ) ( M ) ( U ) 
(1,2)(2,2)(2,2) 
(U)(U)(U) 

knot 

U 

U 
U 
U 
U 
U 

provide both sufficient and necessary conditions for chirality. 
Before discussing the properties of these polynomials, we shall 
consider examples for knot generation. 

As shown in Figure 1 the S configuration of bromochloro
iodomethane generates the left-handed trefoil knot if one follows 
the steps of the algorithm. Note that no two substituents are 
equivalent by reflection, hence, there is a one-to-one assignment 
between number pairs and edges. The actual steps required are 
listed in Table I. Starting with face (1,2,3) the first edge crossed 
in edge (1,2) leading to face (1,2,4). On this face there are two 
edges, (2,4) and (1,4), which have been crossed the fewest times, 
actually, zero times, from which edge (1,4) bears the smaller pair 
of numbers; hence, this edge is chosen. Through this edge the 
string is led to the next face, face (1,3,4); the next edge is (1,3), 
etc. A complete list of faces and edges, in the order of their 
occurrences along the string, is given in Table I. The first multiple 
crossing occurs when leading the string from face (1,2,4) through 
edge (1,2). This is the first such occurrence (n = 1, an odd 
number); hence, the string is led under the string segment already 
there: the string segment from the starting face (1,2,3) to face 
(1,2,4). The next such occurrence (n = 2, an even number) is 
at edge (1,3), where the string is lead over itself. The third (and 
last) such occurrence is at edge (2,3) at the far side of tetrahedron 
P (where n - 3, an odd number) implying that the string is led 
under itself, as shown in Figure 1. 

Note that the same sequence of face and edge symbols and 
over-and-under passes of the string occur for both enantiomers 
of Figure 1, but the resulting knots are different: they are en
antiomeric images of one another. Furthermore, the orientation 
of the arrows on the two completed knots is not significant: the 
handedness of the trefoils is not affected by the reversal of the 
orientation of the arrows shown over them. 

Whenever two or more substituents of either tetrahedra of 
Figure 1 are equivalent, then the algorithm generates a simple 
"unknotted" loop (the "unknot", U). Starting, e.g., with the S 
configuration of Figure 1, this can be tested by direct construction 
of these loops. In Table II the sequence of edge number pairs 
are given for six different achiral types obtained from the S form 
of Figure 1 by substituting equivalent groups. In each case the 
achiral "unknot" U is obtained; hence, for carbon centers the 
algorithm generates a chiral knot if and only if the center itself 
is chiral. 

B -B B B 
O & & O 

K(S,S) K(R,S) = K(S,R) 

Figure 3. The three distinct knots obtained for the SyS, the R,R, and the 
R,S = S,R (meso) forms of two chiral centers of the same constitution. 

In Figure 3 the simplest case of two chiral centers and the 
associated knots are shown. For simplicity we assume that sub
stituents differing only by a prime in our notation are equivalent. 

The first two molecules are optically active enantiomers having 
chiral centers S,S and R,R, respectively, whereas the third and 
fourth molecules are identical meso forms with chiral centers S,R. 
The corresponding knots K(SJS), K(R,R), and K(R£) = K(S,/?) 
obtained by the algorithm described above possess the appropriate 
chirality properties. These knots have been drawn in a symmetric 
manner to facilitate the recognition of various chirality relations 
among them. 

A rather trivial, nevertheless important observation: these knots 
preserve the chirality information independently of their actual 
representation or the way they are drawn in the plane, e.g., if they 
are drawn completely asymmetrically, as long as the string is not 
cut anywhere and there are no tangential contacts between string 
segments nor two or more crossings drawn on top of one another. 

AU that matters is the pattern of crossings in each knot that 
suggests that a simpler representation of molecular chirality is 
possible by making use of this "crossing information". 

Chirality Polynomials V(t) and P(I,m). We shall use two 
recently discovered families of polynomials for the description of 
chirality: the Jones polynomial V(t) and the two-variable poly
nomial P(l,m) of Lickorish and Millett.7"9 Here we shall follow 
the sign and exponent conventions employed by Millett.14 

The rules for the generation of these polynomials are very simple 
and are summarized in Figure 4. We assume that the projections 
of the knots investigated are drawn in the plane without tangential 
contacts or two or more crossings above one another. 

For the "unknot" U (a single loop with no crossings) shown in 
Figure 4, both polynomials are equal to unity, by definition 

Vv(t) = 1 

PvVw) = 1 
(D 
(2) 

(14) Whereas it has no effect on our present study, note that there is as 
yet no uniformity in the sign and exponent conventions employed for the 
definition of V(t) in the recursive formula for the polynomial. The reader 
should be aware of this fact when making comparisons among polynomials 
published by different authors [7-9]. Note, that a recursive formula in which 
the sign of the last term in eq 3 is reversed can be obtained by a 11^4 -» »'/VT/2 

= it1'* substitution, suggesting an underlying generating formula 

-s-*SM + S4S+(S) + (s2 - s-*)S0(s)= O 

By taking s = »'/y»/2 and V(t) = 
obtained, whereas the choice of s 
alternative recursive formula. 

5(r' /VT/2), the recursive formula 3 is 
= t'/4 and V(.t) = S(J1/4) leads to the 
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GENERATION OF POLYNOMIALS V(U AND P(I,m) 

0 Q 

E 0 S 
K C t ) 1 I 

P11(Lm) = I 

-r'vK_(t) + 

r'PK_(l,m) 

tvK+(t) 

+ I P K a 

-(t , / 2-t , / 2)VK(U = 

m) + (TiP1/ ( l ,m) = 

•° 
0 

Q, 

i i 
S 

Q2 

V„ (U = V„ (t)V„ ( t ) 

P1, (l.m)= P (l,m) P1. ( l ,m) 

Figure 4. Rules for the generation of chirality polynomials V(t) and 
P(I,m). Both polynomials are identically 1 for the simple loop ("unknot") 
U. For any three knots K_, K+, and K0, which are identical under the 
cover Q and differ only in their exposed parts, the corresponding poly
nomials are interrelated by the simple rules shown. If one cuts the string 
in two knots, K1 and K2, and joins them in a parallel fashion to obtain 
a new knot K3, then the new polynomial of K3 is the product of those of 
knots K1 and K2. This latter "product rule" provides a simple shortcut 
for the generation of chirality polynomials for larger molecules or for 
products of chemical reactions. 

Consider now three knots, K-, K+, and K0 which have identical 
projections on the plane except for a small neighborhood containing 
at most one crossing. In Figure 4 identical parts of the projections 
are denoted by Q, and the remaining parts are exactly the crossings 
X_ (left-handed crossing), X+ (right-handed crossing) and X0 

("avoided crossing") shown in Figure 2. Then for the polynomials 
of such three knots the following two relations are valid 

and 

- r 1 K1C(O + W1Jt) - (r>/2 - r ' / J ) KK0(O - 0 (3) 

t'PJl,m) + IP1JlM + mPJl,m) = 0 (4) 

In fact, these two polynomials are interrelated: by substituting 
/ = it, and m = i(tl/2 - t'1/2) the polynomial PyJi),m) becomes 
KR(O- We shall use the simpler polynomial K(O in most of our 
examples; however, one should note that for a more general shape 
characterization of certain knots of a large number of crossings 
P(l,m) is a more powerful distinguishing tool than K(O-8 As far 
as chirality is concerned, both P(l,m) and K(O perform equally 
well. 

By repeated applications of relations 1-4, one can generate the 
polynomial of the knot under study.14 

For example, the polynomial V for the right-handed trefoil knot 
T+ can be obtained by applying these rules in three subsequent 
steps for the triplets of knots shown in Figure 5. (For simplicity, 
we use the same term, "knot", for the proper knot T+ as well as 
for the "unknot" U, "U2", and link "L".) Under each knot the 
corresponding K(O polynomial is shown. In each step two of the 
three polynomials are known, either from earlier steps or from 
definition 1; hence, the third polynomial (placed in a heavy-line 
frame in Figure 5) can be obtained by using relation 3. (A similar 
method can be applied for the two-variable polynomial P(I,m)). 

GENERATION OF POLYNOMIAL V(U FOR TREFOIL T+ 

m 0 H 
OTMP o 

OTtEPS 

t« + t-i H! 
OTHP 8 ^ ^ 

< @ < @ < @ 

Knot 

V(U 
0 
1 • r* • rs • r' 

ED 
i« + t-i 

Figure 5. The three steps required for the direct generation of the chi
rality polynomial VJt) of the right-handed trefoil knot, representing a 
chiral center of configuration R. Note that in each step the three planar 
projections differ only in precisely one crossing; hence, they are interre
lated by the equation shown in Figure 4. In each step two of the poly
nomials are known, either from the definition Vu(t) = 1 or from an 
earlier step; hence, the third polynomial (shown in the heavy rectangular 
frame) can be calculated. In the last step, the chirality polynomial VJt) 
= -r* + r 3 + r 1 is obtained for the right-handed trefoil T+, that is, for 
the chiral carbon center of configuration R. 

By using this method one easily finds that for the right-handed 
trefoil knot T+ of chiral center R the two polynomials are 

and 

Kp+(O = -t"4 + T3 + r 1 

pr^(i,m) = -r 4 - if1 + r2w2 

(5) 

(6) 

whereas for the left-handed trefoil knot T_ of chiral center S the 
polynomials are 

VJt) = -t* + i3 + t (7) 

and 

PJl,m) = -lA - 2/2 + Pm1 
(8) 

A fundamental property of polynomials K(O and P(l,m) is that 
any two topologically equivalent placements have exactly the same 
polynomials. For our purposes the most important additional 
property of these polynomials is the following relation: 

If K(O and P(I,m) are the polynomials of knot K of molecule 
M, and if K(O and P(l,m) are the polynomials of knot K of the 
mirror image M of molecule M, then 

and 

K(O = VW 

P(l,m) = P(I-1, m) 

(9) 

(10) 

Since conformational changes (in the strict sense, that is, bond 
rotations) in any molecule M do not alter the chirality of various 
centers, hence, do not alter the knots or knot fragments associated 
with these centers, these polynomials are conformational in
variants of the molecules. Consequently, if by conformational 
changes it is possible to generate a pair of mirror image molecules 
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M and M, then the same polynomials of eq 9 and 10 apply for 
any other conformations of these molecules. In particular, if a 
conformation of M is identical with (superimposable on) a con
formation of M, then 

K(O = K(O (11) 

and 

P(Um) = P(l,m) (12) 

hence 

V(t) = V(rl) (13) 

and 

P(Um) = P(tl,m) (14) 

Of course, if these conformations are identical, then the molecule 
M is achiral. This chemical property is reflected in the chirality 
polynomials in a peculiar way: for achiral molecules polynomials 
V(t) and P(Um) do not change if variables t and I are replaced 
by their reciprocals, \jt and 1//, respectively. We shall refer to 
relations 13 and 14 as chirality conditions (more precisely, 
achirality conditions). 

Each of the relations 13 and 14 is a necessary condition (and 
for the actual knots also a sufficient condition, vide infra) for the 
achirality of molecule M. Conversely, whenever V(t) and V(t'[) 
(and equivalently, whenever P(Um) and P(f\m)) do not agree, 
then molecule M is chiral in all of its possible conformations. 

The mere existence of a chiral conformation of M does not 
necessarily exclude the fulfillment of equivalent conditions 13 and 
14. These conditions are necessarily fulfilled if conformational 
changes can bring about an interconversion of any pair of enan
tiomeric conformations of M. Conformational changes do not 
affect the topological chirality of molecules and also leave the 
knottedness of the corresponding knots invariant. This latter 
invariance implies that of chirality polynomials V(t) and P(Um); 
and this is the reason why these polynomials are conformational 
invariants of molecules. 

Achirality conditions 13 and 14 are somewhat counter intuitive. 
Whereas for large molecules chirality is more the rule than the 
exception, for most of the common, smaller molecules chirality 
and not achirality is regarded by most chemists as a special feature. 
For example, chiral carbon centers are marked by special asterisks 
and not the achiral ones, partly as a result of the traditional 
two-dimensional textbook representation of molecules. On the 
other hand, polynomials with properties 13 and 14 are rather 
exceptional, since most commonly a replacement of the variable 
with its reciprocal does not leave an arbitrary polynomial invariant. 
That is, achirality, a chemical property perceived by most chemists 
as rather common, is reflected by a rather unusual mathematical 
property of the polynomials. Conversely, the "less common" 
chemical property of chirality is reflected in a very common 
mathematical property: replacing the variable with its reciprocal 
usually does alter a polynomial. 

The Case of Several Chiral Centers, Product Rule, and Poly
nomials for Colored Knots. In Figure 3 we have seen the example 
of two chiral centers, composed from two identical sets of sub-
stituents. The corresponding knots K(S,S), K(R,R), and K(R,S) 
= K(SJi) are generated by the algorithm described in a previous 
section. The polynomials of these knots can be obtained directly 
by repeated applications of relations 1-4. However, there is a 
useful shortcut that can be applied in the case of more complicated 
knots. 

This shortcut is based on an intriguing product rule of the 
polynomials. Consider two knots, Kj and K2, cut both at some 
location, and join the two knots with orientations matching, as 
shown in Figure 4. For the resulting knot K3 the polynomials 
are the products of the respective polynomials of knots Ki and 
K2 

KKj(0 - KKl(0KK2(0 (15) 

PK1(I^) = PKl(l,m)PK2(l,m) (16) 

The result is independent of the locations where the cuts are made. 
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!PRODUCT PROPERTIES OF CHIRALITY POLYNOMIALS! 

(̂R.S)'" • W " W " = C-r'+f'T'H-lSt8*!) 

Figure 6. An illustration of the "product rule" of Figure 4, for the R,R 
and R£ configurations of a pair of chiral centers of the same constitution. 
The knot K(R,R) is chiral, since for its polynomial KK(RR)(0 a re
placement of t by r ' results in a different polynomial 

(-r4 + r3 + r')(-r4 + r3 + r1) * (-t* + tl + t)(-t* + t3 + t) 

On the other hand, for the product polynomial VK(RiS)(r) obtained for the 
achiral meso from R*S, the condition of achirality holds, since substitu
tion of r1 for t yields the same polynomial 

(_,-« + r 3 + r t ) (_,4 + ,i + f ) _ (_,4 + ,} + ,)(_,-4 + ,-3 + ,-1) 

The product rule specifies how to generate knots and chirality 
polynomials for a molecule obtained from a reaction of two 
reactants, if the knots of the reactants are known, and if the 
reaction procedes with retention of configurations. Note, that 
an achiral center in a given molecule or an addition reaction with 
an achiral reactant, if this addition does not change the chirality 
of other centers, adds only an "unknot" U to the knot; hence, 
neither the knot nor its polynomials will change. Also note that 
generating a single bond, i.e., a formal "single connection^ between 
two chiral fragments, corresponds to generating two connecting 
string segments between the knots. This observation and the fact 
that the two connecting string segments are of opposite orientation, 
brings to mind some intriguing formal analogies with electron pairs 
of opposite spins forming a single covalent bond. 

Two examples are shown in Figure 6. Consider the R,R 
configurations. Regarding the two chiral centers separately, each 
corresponds to a right-handed trefoil knot, K(Z?) = T+, with the 
polynomial 

KK(j!)(0 = - r 4 + r 3 + r> (17) 

as given by eq 5. For the complete molecule of configuration R,R 
the polynomial 

K K ( W ) • K K W ( 0 K K ( J . , ( 0 = 

(-r4 + r3 + rx)(-rA + r3 + r1) (18) 
is implied by relation 5 that is identical with the polynomial 
obtained by a direct derivation using relations 1-4. 

We may test chirality of this molecule by using relation 13. 
Evidently, 

Kk(JU1)(O * K K ( R ^( r ' ) (19) 
that is, 
( - r 4 + r 3 + F1K-C* + r 3 + r 1 ) * 

(-t* + t3 + t)(-t4 + t3 + 0 (20) 
The right hand side of inequality 20 is in fact the V polynomial 
for the S,S configuration 
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^K(W)O) = H 4 + t3 + OH 4 + t3+ 0 (21) 

that is, evidently, also chiral, as born out by the same condition 
20. 

The second example of Figure 6 is the R,S configuration, having 
the same substituents. For these two chiral centers the knots are 
the right-handed trefoil K(R) = T+ and the left-handed trefoil 
K(S) = T-, the latter having the polynomial as given by eq 7 

VK(S)(t) = -I4 + *3 + * (22) 

Direct construction of the polynomial of the complete knot K(R,S) 
for this configuration gives the same result as the product rule 
15 

VKUUS)O) = VUR)(t)VUS)(t) = (-r* + r 3 + r>)(-*4 + ** + *) 
(23) 

This molecule, a meso form, is evidently achiral. This is born out 
by direct substitution into relation 13 

K̂(JW)W = ^ W " 1 ) (24) 

That is, for the meso form of Figure 6 a replacement of variable 
t with r 1 does not change the polynomial, and this is the very 
condition for a molecule being achiral. 

More possibilities and more interesting polynomials arise if the 
sets of substituents of the two or more chiral centers of the 
molecules do not agree in their constituents. The knot theoretical 
polynomials can be modified to provide a description and a more 
revealing chirality test for such cases. We shall use the following 
convention: if the set of four substituents of a center C1 is the 
same as the set of four substituents of center C2, or, if one set 
consists of the mirror images of substituents in the other set, then 
we use the same color for the string when generating individual 
knots for Ci and C2. Otherwise strings of different colors are 
used. Evidently, if C1 and C2 have substituents of different 
chemical constitution, then an R configuration at C1 is not the 
mirror image of an S configuration at C2, and a K(R,S) knot does 
not represent an achiral meso form. This fact is reflected in the 
color difference of the two parts of knot K(RJS) if this knot K(RJS) 
is obtained by joining the colored K(R) and K(S) knots according 
to the "product rule". Whereas a shift of knotted segments along 
the string of K(R,S) cannot change the knot theoretical identity 
of K(RJS); nonetheless, it leads to ambiguities concerning the color 
assignment. However, no such ambiguity arises for the polyno
mials, if they are generated by the product rule from polynomials 
of colored knots of individual centers, having different variables. 
It appears natural to distinguish the variables of the polynomials 
of knots, for example, of K(R) and K(S), if these knots are of 
different colors. If different variables are used when applying 
the product rule for the polynomials, then chirality tests 13 and 
14 to apply even if the centers C1 and C2 are substituted differently. 
Whereas in the final knot there is no correspondence between the 
chemical identities and chirality properties of centers, this cor
respondence is maintained in the final polynomials. Hence, the 
polynomials obtained by the product rule for colored knots carry 
more stereochemical information in addition to topological chirality 
carried by the resulting knot. 

An example is shown in Figure 7. Let us suppose that sub
stituents 1 and 1' are different in the two chiral centers R and 
S; 1 5* 1', but 2 = 2' and 3 = 3'. A right-handed trefoil knot 
T+ of a blue string is generated around center R, and a left-handed 
trefoil knot T_ of a red string is generated around center S. Taking 
two different variables, tb and tT, for the respective knots, the K 
polynomials are 

»W*b) = - V 4 + V 3 + 'b"' (25) 

and 

W r ) • -'r4 + 'r3 + *, (26) 

The product rule 15 for K(R,S) gives 

^K(JW)(V,) = HtT4 + 'tf3 + V ' ) H 4 + 'r3 + O (27) 
By generalizing rule 13 and replacing all t type variables with 
their reciprocals, one obtains 

Mezey 

CHIRALITY POLYNOMIALS FOR CHIRAL CENTRES OF DIFFERENT 

SUBSTITUENTS AND COLORED KNOTS 

Figure 7. An illustration of the "product rule" for a pair of R and S 
chiral centers of different composition. The fact that the compositions 
are different can be represented by different colors (blue and red) of the 
strings for the knots and different variables (*6 and t,) for the chirality 
polynomials. The condition of achirality for the product polynomial 
VK(RSI(1M n 0 longer holds, since the tb,fr - • ^"'.T1 replacement results 
in 

(-«„-• + »„-» + O H , 4 + t,1 + ',) * 
( V + tb

3 + *„)(-*,-* + I,"3 + I,"1) 

i.e., in a different polynomial. Hence the molecule is chiral. If, however, 
a change of substituents results in equivalent compositions for the two 
centers, R and S, then the colors and variables match, and by omitting 
the distinguishing b and r indices from ib and t, one obtains equality for 
the two polynomials, as required for an achiral meso form. 

* W > ( V \ T') = ( V + 'b3 + h)(-t,-* + ir'
3 + rr-') (28) 

Evidently, 

VK(RJ)(tb-
l,t,-1) * KK(JW)(Mr) (29) 

hence the molecule is chiral. In fact, we obtain the polynomial 
for the S,R configuration 

KKUW)Cb-1A"1) = KK(sjl)(Vr) (30) 

This result is consistent with the application of chirality rule 13 
to the polynomials KK(/})(ib) and VK^(tT) of the colored knots K(Z?) 
and K(S), followed by the application of the product rule for the 
mirror images of knots K(R) and K(S). 

A Sufficient and Necessary Condition for Chirality. The 
modified polynomials, depending on several variables, provide not 
only a sufficient condition but also a sufficient and necessary 
condition for chirality, for all molecules where chirality, if it exists, 
is a consequence of chiral (chirogenic) carbon centers. We shall 
show now, that in addition to being a sufficient condition, the 
inequality 

VK(h,h,...tN) * VR(tut2,...tN) (31) 

is also a necessary condition for chirality. Take an enantiomeric 
pair of chiral molecules, M and M, 

M ^ M (32) 

and, contrary to the above, assume that the modified polynomials 
of relation 31 agree 

VK(tht2,...tN) = KR(I11I2,...**) (33) 

We shall show that this is impossible; that proves (31). 
By writing these polynomials in the form obtained by the 

product rule from polynomials of individual colored knots, K1, eq 
33 implies 

KK(I1 , . . .!*) = flVKl(t,) = ft KK,(*,) (34) 
i - i i - i 

For carbon centers each K,- is either a trefoil or an unknot. By 
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omitting all Vv = 1 polynomials of unknots, we are left with N' 
factors KK(, N' < N, each factor V^1 belonging to a colored chiral 
knot K,. Without loss of generality we may assume that these 
are the first N' factors in the original product 34 

VK(tu...tN) - flV^O,) m fivtfitd (35) 

Since M and M are chiral, N' £ 1 follows. By exploiting property 
9 on the right hand side, one finds that 

ff W = fl V^tfi) (36) 
;=i f-i 

However, for trefoils 

VK1U1) * VK(tfl) (37) 

Hence, eq 36 and the actual form of trefoil polynomials imply 
that for each index i there must exist an index j , j ^ i, such that 

VtIt1) = V^) (38) 

that is 

VK1CJ) = W (39) 

For trefoils this is possible only if 

tj = t, (40) 

Since the above pair assignment applies to all trefoils, N' must 
be even, and by using eq 39 one may write 

KK(l|,..tN) - J I [ W W ] (4D 

Each square bracket depends on a single variable t,; hence, by 
definition of tt it refers to two chiral centers C and C having either 
the same set of four substituents or two different sets where one 
set consists of the mirror images of the substituents in the other 
set. However, the two sets of substituents X, Y, Z, and W of C 
and X, Y, 2, and W of C cannot be the same. The pairing in 
eq 41 implies that the family of substituents X, Y, 2, and W at 
C must contain precisely one unpaired center of type K(r,) that 
is the pair of the R(f/) type center C, whereas the family X, Y, 
Z, and W must contain precisely one unpaired center of type R(r,) 
that is the pair of K(t,) at C. Since these unpaired centers K(*,) 
and K(tj) are different, the two sets of substituents, jX,Y,Z,W} 
and {X,Y,2,W), cannot be the same. 

Hence, substituents X, Y, Z, and W are the mirror images of 
X, Y, 2, and W, respectively. Furthermore, these substituents 
are arranged so that they form a K(f,) type center at C and a K(r,) 
type center at C. Hence, center C with its substituents X, Y, Z, 
and W (that is, the entire molecule) is the mirror image of center 
C with its substituents X, Y, 2, and W (that is also the entire 
molecule). That is, the molecule is the mirror image of itself; 
hence, it is achiral that contradicts condition 32. Consequently, 
relation 33 is impossible for a chiral molecule, and condition 31 
is both sufficient and necessary condition for chirality. 

Comment on a Possible Generalization. All our above examples 
referred to chiral carbon centers, which do represent the majority 
of chirality problems of chemistry. However, the model can be 
extended easily to other chiral centers as well as to chirality 
problems involving no chiral centers at all. One may notice that 
the central carbon atoms in our examples have no direct role in 
the construction of the knots and polynomials; in fact, only the 
polyhedrori defined by the substituents is of importance. 

The simplest generalization is based on the above observation. 
For a general molecule composed from more than three atoms 
one may consider all possible quadruplets of nuclei. Each of these 
quadruplets defines a (usually distorted) tetrahedron, that in the 
coplanar case becomes a quadrilaterial, or a triangle, or a single 
line. 

A serial number is assigned to each atom, and the quadruplets 
(hence, the corresponding geometrical objects) are ordered into 
a sequence according to the symmetric lexicographic order (e.g., 
(1,7,8,9) comes before (2,3,4,5)). A string of the same color is 

used for two quadruplets if and only if the two are composed from 
the same set of four nuclei, and the corresponding atom pair 
distances are the same in the two quadruplets. That is, the same 
color is used if and only if the two quadruplets are either su-
perimposable on each other or are the mirror images of each other. 
Achiral nuclear configurations may contain chiral quadruplets, 
but in such a case to each chiral quadruplet one may assign another 
one that is its mirror image. The above color assignment ensures 
that this fact is reflected in the knots generated. 

In the noncoplanar case the knot is generated exactly as de
scribed in the previous sections. If the nuclei are coplanar, then 
in the quadrilaterial and triangle cases the algorithm yields the 
unknot U, whereas in the collinear case there is no face, and no 
knot is generated. By considering all quadruplets of nuclei in the 
symmetric lexicographic order, the algorithm results in a unique 
(possibly colored) knot that carries all chirality information of 
the molecule. The corresponding polynomials V(t) and P(Um) 
provide a concise description of this chirality information. Note, 
however, that this technique does not take into account the actual 
location of chemical bonds in the molecule, and, as a result, these 
polynomials are specific for the given nuclear configuration and 
are no longer in general conformational invariants. 

However, a somewhat different "conformational" invariance 
property still can be shown to exist. The knots hence the poly
nomials are evidently invariant to any conformational motion of 
the nuclei that (i) leaves the color assignment unchanged, (ii) 
leaves each nondegenerate tetrahedron nondegenerate, and (iii) 
leaves each degenerate tetrahedron (i.e., coplanar quadruplet of 
nuclei) degenerate (i.e., coplanar). Such "tetrahedron-preserving", 
hence "polynomial-preserving", internal motions may include 
actual chemical reactions, e.g., addition reactions along specific 
reaction paths; hence, they are not restricted to internal rear
rangements and conformational changes. 

Summary 
Chirality properties of molecules can be described in terms of 

a set of polynomials deduced from the topological properties of 
knots tied around chiral centers. An algorithm is proposed for 
the construction of a unique knot for any sequence of chiral and 
achiral carbon atoms. These knots have the remarkable property 
that they carry all the topological chirality information of the 
molecules. In particular, the addition or deletion of achiral centers 
do not alter these knots. 

For every knot K two chirality polynomials, VK(t) and PK(l,m) 
can be constructed. The knots and their polynomials are invariant 
to conformational changes of the molecules. Joining two chiral 
molecular fragments corresponds to joining their knots to form 
a single knot that in turn corresponds to generating the product 
of the chirality polynomials of the two chiral molecular fragments. 
Using this method, one can easily generate the knots and chirality 
polynomials of molecules of a large number of chiral fragments. 
A change in substituents can be represented by a color change 
in the string of the knot that in turn corresponds to a change of 
variable of the polynomial. 

In chemical applications the actual generation of knots is not 
required. Using the known polynomials for U, T+, and T_ all the 
necessary polynomials can be generated by the product rule. 

These polynomials provide a simple test for the chirality of 
molecules: the molecule is necessarily chiral if the replacement 
of variables t and / by r1 and T1, respectively, does alter these 
polynomials 

vK(ri) * KK(0 

and 

PK(hm) * PKU'\m) 

In the case of several chiral centers and polynomials involving 
several variables, the analogous condition 31 is a sufficient and 
necessary condition for chirality. These polynomials are con
formational invariants and provide a simple means for computer 
manipulations of chirality properties of large molecules of many 
chiral centers. The remarkable properties of the new, multivariable 
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chirality polynomials underline the importance of the concept of 
chirogenic center used for their definition. This concept circum
vents some of the difficulties in the conventional CIP charac
terization of chirality and provides a natural tool for the analysis 
of chirality associated with tetrahedral centers. 

Laser-induced fluorescence (LIF) of 9-hydroxyphenalen-l-one 
(9-HPLN, Figure 1,1 and its 5-methyl derivative (5-M-9-HPLN, 
Figure 1, II) in a neon matrix at 4 K shows1 fully relaxed vi
brational transitions; this allows the determination of the barrier 
splitting for the proton exchange in both the ground and the excited 
states. A barrier splitting of 92 cm"1 for 5-M-9-HPLN was found 
for the ground state, an increase from 69 cm"1 for 9-HPLN, the 
parent compound. In the excited states the splittings were of 311 
cm"1 for the parent compound and 431 cm"1 for the 5-methyl 
derivative. 

If the methyl group in position five rotated freely, the dou
ble-minimum potential for the proton exchange would remain 
symmetric, and the increase in the barrier splitting would denote 
a decrease in barrier height both in the ground and in the excited 
states.1 This barrier reduction could have been caused by the 
inductive effect of the methyl group through the ir-electron system 
in the molecule or by the proximity of the neon atoms. 

The possibility of barrier reduction as the reason for the increase 
in the barrier splitting seems to be challenged by the NMR spectra 
as their interpretation seems to indicate a reduced barrier pene
tration with the addition of a methyl group.2 

Increased splitting indicates barrier reduction only if the 
double-minimum potential remains symmetric. It was recently 
shown3 that the introduction of a slight asymmetry in a symmetric 
double-minimum potential increases the splitting of the gerade-
ungerade pair and at the same time decreases drastically the 
penetration through the barrier. 

Restricted rotation of a methyl group, if it is in the symmetric 
position five, will be coupled with the large-amplitude nonharmonic 
oscillation of the intramolecularly hydrogen bonded proton. As 
was proposed in a previous publication,4 when one of the C-H 
bonds of the methyl group is perpendicular to the plane of the 
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1984, 106, 7703. 

(2) Haddon, R. C; Rayford, R.; Hirani, A. M. J. Org. Chem. 1981, 46, 
4587. 

(3) Hameka, H. H.; de la Vega, J. R. J. Am. Chem. Soc. 1984,106, 6528. 
(4) Busch, J. H.; Fluder, E. M.; de la Vega, J. R. J. Am. Chem. Soc. 1980, 

102, 4000. 

Acknowledgment. The author is grateful to Professors K. C. 
Millett, D. W. Sumners, and J. Simon for preprints of ref 8, 9, 
and 11 and to Prof. M. Majewski for stimulating conversations. 
This study has been supported by a research grant from the 
Natural Sciences and Engineering Research Council of Canada. 

molecule, the double-minimum potential remains symmetric. 
Rotation of the methyl group from this position destroys the 
symmetry, thus reducing drastically the tunneling rate.5 This 
effect couples the motion of the hydrogen bonded proton with the 
rotation of the methyl group. The potential energy surface for 
the coupled motion is now two-dimensional, and, as proposed 
previously, the eigenstates will belong to the D3d symmetry group, 
to which the Hamiltonian belongs. A similar Hamiltonian was 
successfully used to calculate the energy levels for the coupled 
motion in 2-methyl-3-hydroxyacrolein. 

To determine why the barrier splitting increases when the 
methyl group is attached, the extent of the coupling between the 
proton exchange and the methyl rotation was evaluated from the 
potential energy surface. 

Calculations 
Ab initio SCF molecular orbital calculations were performed 

for the electronic energy6 at the STO-3G level7 with convergence 
on the density matrix set at 10"7 au. 

The five geometries pertinent to the system (Figure 2) were 
optimized with the proper geometrical constraints until all ana
lytical nuclear cartesian forces8 were less than 0.0005 au/Bohr. 
As in the case of the parent compound, all atoms, except two or 
three hydrogens of the methyl group, are in a plane. The structure 
with minimum energy, an absolute minimum, is represented by 
structure A (Figure 2). In this structure one C-H bond of the 
methyl group is in the plane of the molecule and cis with respect 
to the O-H. There is another absolute minimum, 1.05 kJ/mol 
above the previous one, in which again one methyl C-H is in the 
plane but now trans with respect to the O-H (structure C, Figure 
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Abstract: Introduction of a methyl group in the symmetric position in 9-hydroxyphenalen-l-one couples the rotation of the 
methyl group with the oscillation of the intramolecularly hydrogen bonded proton if the frequencies of the two motions are 
of the same order of magnitude. This coupling produces two apparently paradoxical effects. On the one hand, the barrier 
splitting increases; on the other hand, the proton flux through the barrier decreases. If the motions of the methyl group and 
the proton were uncoupled, the energy levels would be a superposition of the gerade-ungerade eigenvalues of the double-minimum 
potential and the rotational manifold of the methyl group. However, the coupling between the two motions is observed to 
split those levels of the methyl rotation which are multiples of three, producing two manifolds, each consisting of six closely 
spaced energy levels with Di(t symmetry, which is that of the two-dimensional potential energy levels for the coupled motion. 
The calculated average separation between the two manifolds is in good agreement with the assigned experimental value. The 
fact that with the methyl in position five two closely spaced manifolds are obtained would explain the increase observed in 
the relaxation of the excited vibrational state in 5-methyl-9-hydroxyphenalen-l-one. 
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